C. Handlebodies

-index of handle

an n-dimensional k-handle is

$$h^k = D^k \times D^{n-k}$$

set $\partial_{-}h^{k} = (\partial_{-}D^{k}) * D^{n-k}$

2+hh = Dk x (3Dn-k)

Ak = (00k) x (0)

Ch = Dk + {0}

 $B^{h} = \{0\} \times (\partial D^{n-h})$

K = {0} x D n-k

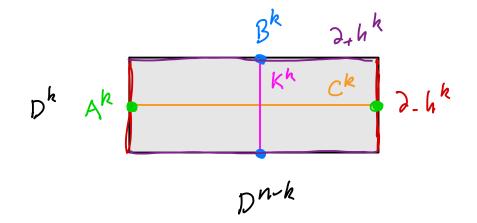
attaching region

attaching sphere

core

belt sphere

6-core



given an n-manifold M and an embedding $\phi: \partial_- h^k \longrightarrow \partial M$

we attach hk to M by forming the quotient space

 $M \perp h^{k}$ $(x \in \partial_{-}h^{k}) \sim (\phi(x) \in \partial_{M})$



example:

in dimension 2:

2-42 =

$$\frac{k=0}{2-h^{\circ}=0}$$

$$\frac{k=1}{1-h}$$

$$\frac{k=1}{1-h}$$

$$\frac{k=2!}{1-h}$$

$$\frac{k=2!}{1-h}$$

$$\frac{k=2!}{1-h}$$

$$\frac{k=2!}{1-h}$$

$$\frac{k=2!}{1-h}$$

Remark:

- i) In all dimensions attaching a 0-handle is just disjoint union with D"
- z) only a 0-handle can be attached to

the empty set

3) In all dimensions n attaching an n-handle is just "capping off" an 5ⁿ⁻¹ boundary component

in dimension 3:

$$h=0:$$
 $h=1:$
 $D'*D^2$
 $2-h'=0$
 D^2*D'
 D^2*D'

 $k=3: \sqrt{}$

Remark: Note that when a handle is attached one has a manifold with iorners." There is a standard way to smooth them to get a manifold with boundary (see Wall "Differential Topology")

lemma 1:

If 4,4:2M-72N are two diffeomorphisms that are isotopic then MUN/ (xe2M)~(4(x)e2N) and MUN/ (xe2M)~(4(x)e2N) are diffeomorphic

Proof:

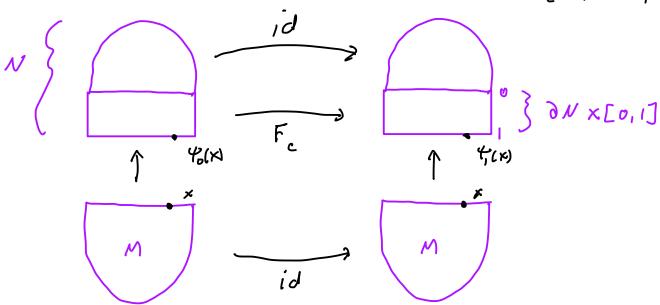
let
$$f:(\partial M \times \{0,1\}) \rightarrow \partial N$$
 be the isotopy
so $f(x,i) = f(x)$ $1 = 0,1$

note: $F_c:(\partial N \times [0,1]) \rightarrow (\partial N \times [0,1]):(x,t) \mapsto (\Psi(\psi_c^{-1}(x),t),t)$

is a diffeomorphism

now define \widetilde{F}

Fc (x,0) = x Fc (x,1) = 4.0 4 (x)



note F gives a map F on the quotient spaces

exercise: 1) F is a homeomorphism

2) Fis a diffeomorphism (need to understand smooth Structure on quotient space)

We will often use this lemma, but now we need a "relative" version

exencise:

1) if $\phi_0, \phi_1: \partial_-h^k \rightarrow \partial M$ are isotopic, then the result of

attaching hk to M with to is diffeomorphic to the result of attaching with the

2) the isotopy class of $\phi: \partial_{-}h^{k} \to \partial M$ is determined by

a) isotopy class of $\phi|_{Ak}$ $(A^k = S^{k-1} \times \{0\})$ (i.e. an S^{k-1} knot in ∂M)

b) the "framing" of the normal bundle of $\phi(A^k)$ 1.e. an identification of $V(\phi(A^k))$ with $S^{k-1} \times \mathbb{R}^{n-k}$ mormal bundle

Hint: Recall $\phi(A^k)$ has a nobled diffeomorphic to a nobled of the zero section in $V(\phi(A^k))$

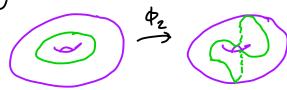
the easiest way to get this is by choosing a Riemannian metric and use the exponential map now choose metrics cleverly

example: notice 5'x R2 has an integers worth of framings

$$S^{1} \times \mathbb{R}^{2} \longrightarrow S^{2} \times \mathbb{R}^{2}$$

$$(\phi, (r, \phi)) \longmapsto (\phi, (r, \phi + n\phi))$$

eg on unit disk



3) show the framings on a k-dimensional sphere in Y' are in one-to-one dim of the correspondence with $\pi_k(O(n-k))$ bundle

from above we see that

attaching on n-dimensional k-handle one must specify

1) an 5^{k-1} knot in ∂M and

2) an "element" of $T_{k-1}(O(n-k))$

to really get an element need a canonical "zero" framing

examples:

- i) a 0-handle in an n-manifold

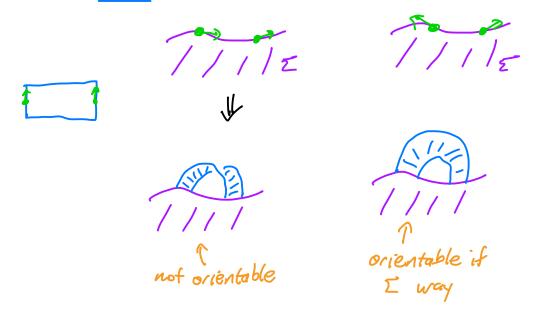
 attaching sphere is & and

 framing T. (0(0)) = &

 so no choices! unique way to attach a 0-handle

 we saw above attaching 0-handle is just

 taking union with B"
- 2) I-handles in an n-manifold attaching sphere is $5^{\circ}=\cdot\cdot$ framing $\mathcal{T}_{0}\left(o\left(n-i\right)\right)=\mathbb{Z}_{2}\left(n>i\right)$ so once you pick 2 points to attach I-handle there are 2 ways to attach handle

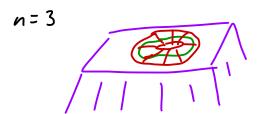


this happens in general: When attaching a 1-handle once attaching sphere is specified there is a unique way to attach handle and preserve orientability (assuming M connected)

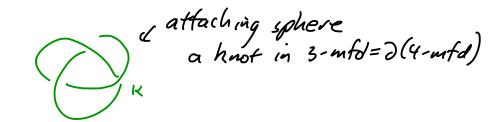
3) 2-handles in an n-manifold attaching sphere an 5'

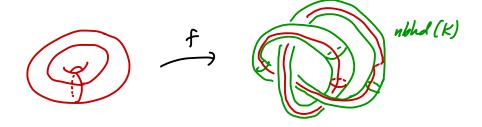
framing element of $\pi_1(O(n-2)) = \{\xi\}$ $\{\xi\}$ 1-2=0,1 1-2=2 n-2>2

n=2 no choice once s' specified



n=4





get other "framings" by composing $f \circ \phi_n$ $\phi_n : 5' \times D^2 \rightarrow 5' \times D^2 : (\phi, \gamma, \theta) \longmapsto (\theta, \gamma, \theta + n\phi)$

A handle decomposition of an n-manifold M is a sequence of manifolds $M_0, M_1, \dots M_{\ell}$ such that

1) Mo = Ø and Me = M

2) Month is obtained from Mi by a h-handle attachment for some k

a handle decomposition of a cobordism M with $\partial_-M \neq \emptyset$ is the same except $M_0 \cong [0, E] \times \partial_-M$

example:

handle decompositions of 52

-handle 1111 z-handle

Thm2:

Any smooth compact manifold has a handle decomposition.
This follows from the existence of Morse functions!

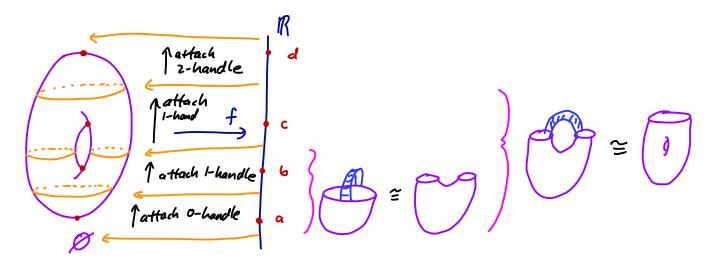
Main The of Morse Theory:

let f:M-) R be a Morse function

I) if [a,b] contains no critical values then $f^{-1}(\{a,b]) = f^{-1}(a) \times \{a,b\}$ manifold since a regular value

II) if $\exists!$ critical point $p \in f^{-1}([a,b])$ of index $h \not \exists t$. $f(p) \in (a,b) \text{ then } f^{-1}([a,b]) \text{ is obtained from } f^{-1}(a) \times [a,a+\varepsilon] \text{ by attaching a } h-handle \text{ to } f^{-1}(a) \times \{a+\varepsilon\}$

example:



Kemark: handle decomposition theorem clearly follows Proof of I:

> recall a Riemannian metric on M is a choice of "inner product" on TxM for each x

> > 9x: TxMxTxM >R 1.e.

- such that 1) gx is bilinear
 - 2) gx (v,w) = gx (v,v) and
 - 3) 9x (v.v) >0 and 9x(v,v)=0 0 v=0

and gx varies smoothly with x (technically g is a positive-definite, symmetric 2-tensor)

Fact: all manifolds have Riemanian metrics given g on M we get a map

exercise: Show og is an isomorphism

given a function $f: M \to \mathbb{R}$ we define the gradient to be $\nabla f = \phi_g^{-1}(df)$

exercise: Show ∇f_x is perpendicular to $f^{-1}(f(x))$ if f(x) a regular value

now set $v = \begin{cases} \sqrt{f} & \text{since df $\neq 0$} \\ \sqrt{||\nabla f||^2} & \text{near $f^{-1}([a,b])$} \end{cases}$ outside a nobal of $f^{-1}([a,b])$

let I: MxR-M be the flow of v

recall of: M=M:x+> E(x+) is a diffeomorphism

note: $d_{\mathbf{x}}(f \circ \Phi(\mathbf{x}, t)) = df_{\Phi(\mathbf{x}, t)}(d_{\mathbf{x}} \Phi(\mathbf{x}, t))$ $= df_{\Phi(\mathbf{x}, t)}(v)$ $= g(\nabla f, \frac{\nabla f}{\|\nabla f\|^2}) = 1$

So $f \circ \overline{f}(x,t) = t + constant = t + f(x)$

(in a abbd of
$$f^{-1}([ab])$$
)

$$f^{-1}([a+t]) = f^{-1}([a+t]) + ([a+t]) + ([a+t])$$

so $f^{-1}([a]) = f^{-1}([a+t]) + ([a+t])$

is a diffeomorphism

now set

$$f^{-1}([a]) \times [[a,b]] \to M$$

$$([a,t]) \longmapsto f^{-1}([a]) \times [[a,t])$$

Claim: $f^{-1}([a]) \times [[a,t]) = f^{-1}([a])$

then $f^{-1}([a]) = f^{-1}([a]) = f^{-1}([a])$

$$f^{-1}([a]) = f^{-1}([a+t]) + f^{-1}([a])$$

$$f^{-1}([a]) = f^{-1}([a+t]) + f^{-1}([a])$$

$$f^{-1}([a]) = f^{-1}([a+t]) + f^{-1}([a])$$

$$f^{-1}([a]) = f^{-1}([a+t]) + f^{-1}([a+t])$$

$$f^{-1}([a]) = f^{-1}([a+t]) + f^{-1}([a])$$

$$f^{-1}([a]) = f^{-1}([a]) + f^$$

Clearly:
$$Y$$
 is onto (exercise if not obvious)

Claim: Y injective

If $Y(x,t) = Y(y,s)$ then $t=s$

So $\psi_t(x) = \psi_s(y) = \psi_t(y)$
 $\therefore x=y$

a bijective local diffeomorphism is a diffeomorphism

Sketch of Part II;

First we need

lemma 3 (Fundamental lemma of Morse theory):

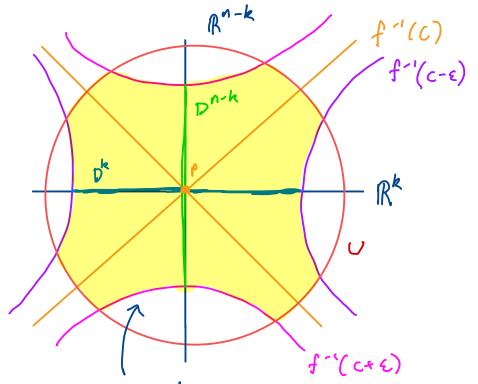
If ρ is a non-degenerate critical point of $f: M \rightarrow \mathbb{R}$ with index k then 3 coordinates about ρ such that f takes the form

$$f(x_1,...,x_n) = f(p) - x_1^2 - ... - x_k^2 + x_{k+1}^2 + ... + x_n^2$$

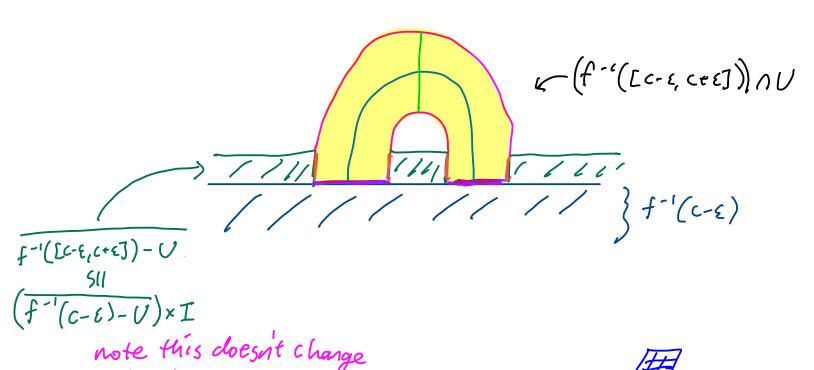
will prove this later but first see how Part II) follows from the lemma

let U be a neighborhood of the critical point p as in the lemma

so in
$$V$$
 we see (let $f(p) = c$)



this is essentially k-handle attachment



Proof of lemma 3:

topology

take any woordinate chart 4 sending 0 to p, writing f in these wordinants (1e for but we just write f)

$$\left(\frac{\partial \times_1 \partial X_1}{\partial^2} f \Big|_{\mathcal{O}}\right)$$

can be diagonalized by an appropriate choice of basis.

If $L:\mathbb{R}^n \to \mathbb{R}^n$ is this change of basis map then replace Y by $Y \circ L$ (still call it Y), then f in these coords $A = \left(\frac{\partial^2}{\partial x_i \partial x_j}, f\right|_{\mathcal{O}} = \left(\frac{\partial^2}{\partial x_i}, f\right$

to further normalize for we write in is a special way

from here on we write f for for and just think of f as a function on an open set in R"

$$f(x) - f(0) = \int_{0}^{1} \frac{d}{dx} f(x) dt$$

$$= \sum_{i=1}^{n} \int_{0}^{1} \frac{\partial f}{\partial x_{i}} (tx) x_{i} dt$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j}$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j} dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds x_{i} x_{j} dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtds$$

$$= \sum_{i,j=1}^{n} \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (stx) dtd$$

by replacing by, with $\frac{1}{2}(b_i, +b_j)$ = $x = \begin{bmatrix} x_i \\ x_n \end{bmatrix}$ we can assume b_x is symmetric could recta

Could redo above to see $f = \kappa^T B_{\kappa}^T x$

note: B = A

Claim: we can find an invertable matrix Q_x depending on xsuch that $Q_x^T B_x Q_x = A$ (e.g. $Q_0 = T$)

then set $\Psi(x) = Q_x \times and note$ $d\Psi_0 = Q_0^{-1} = I$ $50 \ \forall is a local diffeo (coord. chart!)$ $\Psi: V \rightarrow U$ $(x_1, -x_n) \quad (y_1 - y_n)$

and
$$f(y) = f(0) + (Q_{\psi^{-1}(y)}Y)^{T} B_{\psi^{-1}(y)} (Q_{\psi^{-1}(y)}Y)$$

$$= f(0) + yT (Q_{\psi^{-1}(y)} B_{\psi^{-1}(y)} Q_{\psi^{-1}(y)})y = f(0) + y^{T}Ay$$

$$\therefore \text{ if we set } \phi = \psi^{-1} \text{ then }$$

$$f \circ \phi(y) = f(0) + \psi(\phi(y))^{T} A \psi(\phi(y))$$

$$= f(x) + y^{T}Ay$$

$$= f(x) - y_{1}^{2} - - y_{n}^{2} + y_{n+1}^{2} + ... y_{n}^{2}$$

##

Proof of Claim: We show, given $A = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$ $\exists a \text{ nbhd } N \text{ of } A \text{ in space of nrn matricies}$ and a smooth map $P: N \to GL(n, R)$ s.t. P(A) = I and $P(B)^{\dagger}BP(B) = A \forall B \in N$

to see this suppose B is close enough to A so that but to and has the same sign as an

consider the map T: R" -> R" given by

$$T = \begin{cases} \frac{|a_{11}|}{|b_{11}|} & \frac{|a_{12}|}{|a_{11}|} & \frac{|a_{11}|}{|a_{11}|} & \frac{|a_{11}|}{|a_{11}|}$$

$$=\frac{|a_{ii}|}{|b_{ii}|}\begin{pmatrix}b_{ii} & 0 & --- & 0\\ 0 & B'' \end{pmatrix} = \begin{pmatrix}a_{ii} & 0 & --- & 0\\ 0 & B''' \end{pmatrix}$$
and if $b_{ii} \sim \pm 1$, $b_{ii} \sim 0$ then B''' close to A_{ii} so we can induct

Minor

D. Main Facts about handle decompositions

lemma 4:

in dimension n, an "upside davn" k-handle is an (n-n) handle

19. If you attach a k-handle to Mx {13 < Mx {0,1]

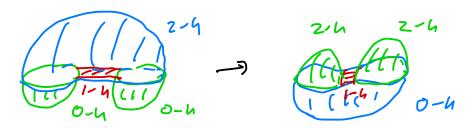
to get W, where dW = -M U M'

then W is diffeomorphic to the result

of attaching an (n-k)-handle to Mx {0} < Mx [0,1]

Remark: if a handle decomposition of M came from a Morse function $f: M \to \mathbb{R}$ then $-f: M \to \mathbb{R}$ a Morse function st. an index h critical point for f becomes and index n-h critical point of -f

example

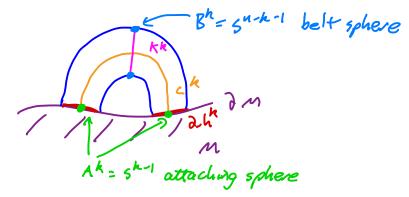


exercise: Prove lemma

<u>lemma 5</u>:

Given a hardlebody structure on M we may always assume hardles of index h are attached before hardles of index l>k and k-hardles can be attached in any order

Proof: recall



now suppose h is attached after h l = k

for
$$h^k$$
 $A^k = 5^{k-1}$
 $A^k = 5^{k-1}$

we can isotop A to be transverse to B

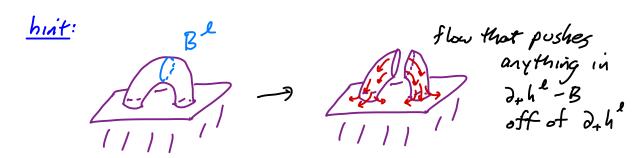
recall isotopy does not affect the resulting mid

so ANB has dimension

30 A is disjoint from B

exercise: if f: N -> Muh' is an embedding disjoint from B, then f can be isotoped

so inf(f) is disjoint from he



: the attaching region of hk can be moved away from he and so hk and he can be attached in any order

note: Not true for kol

h' cannot

come before h²

so all k handles can be attached a the same time but there is on interesting thing that happes when you do this

suppose you had

now you push orange of of the blue in 2 ways

1/1/

the difference is called a handle slide

note: the affaching sheres change as follows

7/1/

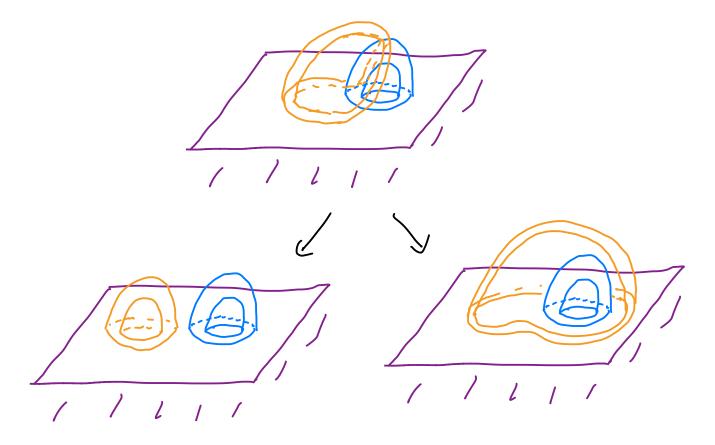
you "make a copy of blue then connect sum the orange with copy"

Cony of blue

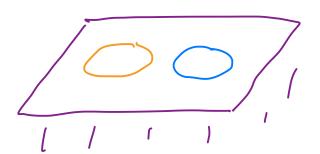
Connect

Sum

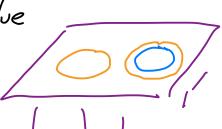
this is easier to see with 2-handles in 3D



so attaching spheres are

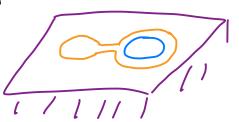


make a copy of blue



Connect sum

Dh x Da-h



the way to prove this works in any dimension is as follows

- i) in blue handle you see $D^k \times \{p\} \subset \partial_+ h^k$ It gives a $5^{k-1} \subset \partial M$ (copy of attaching sphere)

 2) can move part of orange attaching
- 2) can move part of orange attaching sphere neare this 5^{h-1} and use D^k to guide an isotopy over blue handle

eg. attaching sphere Dk+ sp}

attaching sphere i push along red

note: even though we can't "see" a 4-dimensional 2-handle we can see how there attaching spheres change as we do a handle shide

we will discuss this much more later on in the course.

lemma 6:

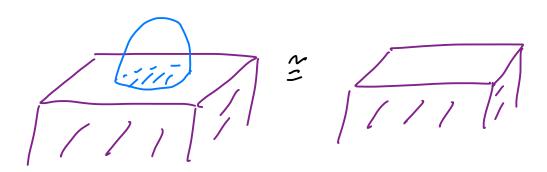
If M'= Muhhuhk+1 such that the attaching sphere of hk+1 intersets the belt sphere of hk exatly once and transversely, then M'= M

we say the handles can be cancelled

Proof: we need a preliminary result

kmma 7:

if M is an n-manifold with boundary $A = disk D^{n-1} \subset \partial D^n$, and $f: A \to \partial M$ an embedding then $M \cup_f D^n \subseteq M$



exercise:

- 1) Prove lemma 7
- 2) Under the hypothesis of lemma 6

 Show you can isotop attaching region

 of hk+1 so hk nh h+1 is a disk

 i. lemma 7 => hk nh h+1 = D"
- 3) Show ((h k v h k+1) = D") n M is a

50 hknh = 1/11 dish : lemma 7=) M'=M

Mr(hkuhher) = mearly

#

Corollary 8:

if W is a connected n-dimensional cobordism then it has a handle decomposition with $1 \ge 0$ -handles if $2 - W = \emptyset$

1 } n-handles if dow { = & # &

Proof:

note: if k71, then 2-hk is connected so attaching hk must be done to a component of W

:. W uhk has the same number of womponents as M

· attaching a 0-handle adds components to W

attaching a 1-handle either keeps the
 number of components the same or
 reduces the number by one

(11) 1-4 (1) W

now assume J-W=0, we can attach all zero handles first
if there is more than one, then W will not be
connected unless I I-handle h' connecting 2 of the
o-handles hi, hiz

note: belt sphere = dh;

aftaching sphere of h' = 5°

so by Fact 3 above can concel h'uhz

note: given a Morse function f, -f is Morse too with same critical points but if one was india k for f then its n-k for -f similarly if you think of a handlebody "upside down" you have same handles but k handle becomes n-k

:. also done with J+W=&
exercise: do other cases

Æ